时 间:2021年12月21日(星期二)13:30-15:00
地 点:经管大楼A楼五楼第一会议室
主 题:不确定性指标对于经济变量的预测能力分析(How well does
uncertainty forecast economic activity? )
主讲人:徐佳文(上海理工大学管理学院)
简 介:徐佳文,上海理工大学管理学院金融系副教授。2013年获得美国波士顿大学经济学博士学位,师从著名计量经济学家Pierre Perron教授。主要研究领域包括时间序列分析、金融计量、宏观预测模型等,专注于模型系数的不稳定性、经济金融体系的不确定性以及金融模糊性方面的研究,主持国家自然科学基金青年项目《时变系数混频动态因子模型的研究及应用》,参与国家自然科学基金面上及应急项目,在SSCI收录期刊上发表论文多篇。
摘 要:尽管关于经济和经济政策不确定性的文献有很大的范围和影响,但对经济不确定性指标的预测能力的研究却出奇的不足。我们评估了几种常用的不确定性指标对实体经济和金融变量的样本内和样本外预测能力,以及对GDP增长分布的分位数回归预测。由于宏观经济数据发布修正的偏差,实时数据的使用和估计方法的考虑是非常重要的。我们构建了新的宏观经济不确定性和金融不确定性的实时版本,并将其与原始(事后)指标对应进行分析。我们发现所有的不确定性指标都有一定的预测能力,事后的宏观经济不确定性表现相对较好。然而,实时宏观经济不确定性与事后对应指标相比表现不佳,这一发现与事后宏观经济不确定性表现中的子样本不稳定性有关。
Despite the enormous reach and influence of the literature on economic and economic policy uncertainty, the forecasting performance of economic uncertainty measures has been surprisingly under-researched. We evaluate the ability of several popular measures of uncertainty to forecast in-sample and out-of-sample over real and financial outcome variables, as well as over different quantiles of the GDP growth distribution. Real-time data and estimation considerations are highly consequential, owing to look-ahead bias. We construct new real-time versions of both macroeconomic (Jurado et al. (2015)) and financial uncertainty Ludvigson et al. (forthcoming), and analyze them together with their ex-post counterparts. We find some explanatory power in all uncertainty measures, with relatively good performance by ex-post macroeconomic uncertainty (MU). However, real-time MU performs poorly compared to its ex-post counterpart, a finding that we relate to sub-sample instability in the performance of ex-post MU.