顾长贵

职称:教授 博士生导师 系统科学系主任、系统科学与工程专业负责人

主要研究领域:复杂网络、生物节律、系统科学

电子邮箱:gu_changgui@163.com

办公室:经管大楼A楼1115室

教育背景与工作经历

博士,理论物理,华东师范大学

硕士,理论物理,扬州大学

学士,物理教育,扬州大学

2015.05—至今,上海理工大学管理学院副教授、教授

2012.04--2014.12,博士后研究员   荷兰莱顿大学医学院

2010.09--2011.08,访问学者  美国马萨诸塞大学医学院



教研项目及成果

科研项目(截止2022.8月)

主持国家自然科学基金“跨时间尺度耦合的生物节律模型研究” (面上项目,No. 12275179,55万元,2023.1-2026.12)

主持上海市自然科学基金 (No. 21ZR1443900,20万元,2021.9-2024.8)

主持国家自然科学基金“时变网络结构下的生物钟模型研究” (面上项目,No.11875042,60万元,2019.1-2022.12)

主持国家自然科学基金“双层网络下的振子集体行为研究:以生物钟神经元网络为例” (青年项目,No.11505114, 21.3万元,2016.1-2018.12)

上海市教委“青年东方学者”人才计划 (No. QD2015016, 60万元研究经费,2015.5-2017.12)

主持上理沪江领军人才计划 (35万元研究经费,2017.1-2019.12)

主持上海高校青年教师资助计划(No.10-16-303-806,4.5万经费, 2016.1-2017.12)

主持华东师范大学优秀博士基金 “不同光照条件下的哺乳动物近日节律”(No.2010027,2009.12-2011.06)

作为主要研究成员(排名第二)完成刘宗华教授主持的国家自然科学基金“基于复杂网络的生物节律模型探索”(No.10975053, 2010.01-  2012.12)

作为主要研究人员完成荷兰国家自然科学基金 “THE NEURONAL NETWORK ORGANIZATION OF THE BIOLOGICAL CLOCK”NWO   grant (No.010840, 2011.06-2015.06)。

作为主要研究成员完成何大韧教授主持的国家自然科学基金“合作网络及合作-竞争网络的共性” (No.70671089, 2007.01-2009.12)。


在PNAS等期刊发表SCI论文百余篇(已正式被SCI论文检索,截止2023.4),研究成果被纽约时报、美国物理联合会主页等媒体报道

1. Chen X, Weng T, Gu C, & Yang H (2019) Synchronizing hyperchaotic subsystems with a single variable: A reservoir computing approach. Physica A 534.

2.Chen X, et al. (2020) Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach. Physical Review E 102(3).

3.Deng S, Ren H, Weng T, Gu C, & Yang H (2019) Information on evolutionary age in redundancy of complex network. Modern Physics Letters B 33(27).

4.Ding W, Gu C, & Liang X (2016) A Simple Structure for Signal Amplification. Communications in Theoretical Physics 65(2):189-192.

5.Feng J & Gu C (2020) Scale invariance in the series of Chinese-character lengths. International Journal of Modern Physics C 31(1).

6.Feng W, Yang Y, Yuan Q, Gu C, & Yang H (2019) Evolution of scaling behaviors in currency exchange rate series. Fractals-Complex Geometry Patterns And Scaling In Nature and Society 27(2).

7.Gao J & Gu C (2019) Super Multi-Armed and Segmented Spiral Pattern in a Reaction-Diffusion Model. Ieee Access 7: 140391-140401.

8.Gao J, Gu C, & Yang H (2020) Spiral waves with interfacial oscillatory chemical reactions emerge in a model of reaction-diffusion systems. Chemical Physics 528.

9.Gao J, Gu C, & Yang H (2021) Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle. Chinese Physics B 30(7).

10.Gao J, Gu C, Yang H, & Wang M (2021) A flight formation mechanism: The weight of repulsive force. Communications In Nonlinear Science And Numerical Simulation 95.

11.Gao J, Gu C, Yang H, & Weng T (2019) Size of a steady disturbance source affects the frequency of a target wave. AIP Advances 9(8).

12.Gao J, Gu C, Yang H, & Weng T (2020) Excited state of spiral waves in oscillatory reaction-diffusion systems caused by a pulse. Physical Review E 101(4).

13.Gao J, Gu C, Yang H, & Weng T (2020) Prediction of spatial distribution of invasive alien pests in two-dimensional systems based on a discrete time model. Ecological Economics 143.

14.Gao J, Gu C, Yang H, & Weng T (2020) A type of bi-stable spiral wave in a single -period oscillatory medium. Communications In Nonlinear Science And Numerical Simulation 85.

15.Gu C, et al. (2015) Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice. Proceedings of the National Academy of Sciences of the United States of America 112(8): 2320-2324.

16.Gu C, et al. (2019) Splitting between two subgroups of the SCN neurons with instantaneous feedback. Nonlinear Dynamics 97(2): 1245-1251.

17.Gu C, et al. (2019) Disassortative Network Structure Improves the Synchronization between Neurons in the Suprachiasmatic Nucleus. Journal of Biological Rhythms 34(5): 515-524.

18.Gu C, Liang X, Yang H, & Rohling JHT (2016) Heterogeneity induces rhythms of weakly coupled circadian neurons. Scientific Reports 6.

19.Gu C, Liu Z, Schwartz WJ, & Indic P (2012) Photic Desynchronization of Two Subgroups of Circadian Oscillators in a Network Model of the Suprachiasmatic Nucleus with Dispersed Coupling Strengths. PLoS One 7(5).

20.Gu C, Ramkisoensing A, Liu Z, Meijer J, & Rohling J (2014) The Proportion of Light-Responsive Neurons Determines the Limit Cycle Properties of the Suprachiasmatic Nucleus. Journal of Biological Rhythms 29(1):16-27.

21.Gu C, Rohling J, Liang X, & Yang H (2016) Impact of dispersed coupling strength on the free running periods of circadian rhythms. Physical Review E 93(3).

22.Gu C, Tang M, Rohling J, & Yang H (2016) The effects of non-self-sustained oscillators on the en-trainment ability of the suprachiasmatic nucleus. Scientific Reports 6.

23.Gu C, Tang M, & Yang H (2016) The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods. Scientific Reports 6.

24.Gu C, Wang J, & Liu Z (2009) Free-running period of neurons in the suprachiasmatic nucleus: Its dependence on the distribution of neuronal coupling strengths. Physical Review E 80(3).

25.Gu C, Wang J, Wang J, & Liu Z (2011) Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons. Physical Review E 83(4).

26.Gu C, Wang P, Weng T, Yang H, & Rohling J (2019) Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus. Mathematical Biosciences and Engineering 16(4):1893-1913.

27.Gu C, Xu J, Liu Z, & Rohling J (2013) Entrainment range of nonidentical circadian oscillators by a light-dark cycle. Physical Review E 88(2).

28.Gu C, Xu J, Rohling J, Yang H, & Liu Z (2015) Noise Induces Oscillation and Synchronization of the Circadian Neurons. PLoS One 10(12).

29.Gu C & Yang H (2016) The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus. Chaos 26(5).

30.Gu C & Yang H (2017) The asymmetry of the entrainment range induced by the difference in intrinsic frequencies between two subgroups within the suprachiasmatic nucleus. Chaos 27(6).

31.Gu C & Yang H (2017) Differences in intrinsic amplitudes of neuronal oscillators improve synchronization in the suprachiasmatic nucleus. Chaos 27(9).

32.Gu C, Yang H, Meijer JH, & Rohling J (2018) Dependence of the entrainment on the ratio of amplitudes between two subgroups in the suprachiasmatic nucleus. Physical Review E 97(6).

33.Gu C, Yang H, & Rohling J (2017) Dissociation between two subgroups of the suprachiasmatic nucleus affected by the number of damped oscillated neurons. Physical Review E 95(3).

34.Gu C, Yang H, & Ruan Z (2017) Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions. Physical Review E 95(4).

35.Gu C, Yang H, & Wang M (2017) Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus. Physical Review E 96(5).

36.Gu C, Yang H, Wang M, & Rohling J (2019) Heterogeneity in relaxation rate improves the synchronization of oscillatory neurons in a model of the SCN. Chaos 29(1).

37.Gu C, Wang P, & Yang H (2019) Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons. Chinese Physics B 28(1).

38.Gu C, Yang H, & Wang M (2018) Ratio Between Sensitive Strength to Light Information and Coupling Strength Affects Entrainment Range of Suprachiasmatic Nucleus. Communications in Theoretical Physics 70(6):771-776.

39.Gu C, Zhang X, & Liu Z (2014) Collective behaviors of suprachiasm nucleus neurons under different light-dark cycles. Chinese Physics B 23(7).

40.Gu C, et al. (2011) Onset of cooperation between layered networks. Physical Review E 84(2).

41.Gu Q, Qin G, Wang Y, Gu C, & Yang H (2019) Scale-Invariance Exists in the Series of Character Intervals in the Four Great Chinese Novels. Communications in Theoretical Physics 71(9):1139-1142.

42.Li J, Gu C, & Yang H (2020) Noise induces oscillation in the two weakly coupled subgroups of the suprachiasmatic nucleus. Nonlinear Dynamics 102(4):2759-2766.

43.Li W, Jiang L, Gu C, & Yang H (2017) The influence of migration speed on cooperation in spatial games. Journal of Statistical Mechanics-Theory and Experiment.

44.Li W, Jiang L, Gu C, & Yang H (2018) Influentials promote cooperation in spatial snowdrift games. Journal of Statistical Mechanics-Theory and Experiment.

45.Liu K, Weng T, Gu C, & Yang H (2020) Visibility graph analysis of Bitcoin price series. Physica A 538.

46.Liu Z, Xiao Q, Zhan Q, Gu C, & Yang H (2017) Network-based landscape of research strengths of universities in Mainland China. Physica A 478:49-62.

47.Mutua S, Gu C, & Yang H (2016) Visibility graphlet approach to chaotic time series. Chaos 26(5).

48.Qiu L, Gu C, Xiao Q, Yang H, & Wu G (2018) State network approach to characteristics of financial crises. Physica A 492:1120-1128.

49.Qiu L, Yang T, Yin Y, Gu C, & Yang H (2016) Multifractals embedded in short time series: An unbiased estimation of probability moment. Physical Review E 94(6).

50.Ramkisoensing A, et al. (2014) Enhanced Phase Resetting in the Synchronized Suprachiasmatic Nucleus Network. Journal of Biological Rhythms 29(1):4-15.

51.Ren H, Yang Y, Gu C, Weng T, & Yang H (2018) A Patient Suffering From Neurodegenerative Disease May Have a Strengthened Fractal Gait Rhythm. IEEE Transaction on Neural Systems and Rehabilitation Engineering 26(9):1765-1772.

52.Ren H, et al. (2020) Pattern interdependent network of cross-correlation in multivariate time series. Physical Review Applied 384(30).

53.Ruan Z, Tang M, Gu C, & Xu J (2017) Epidemic spreading between two coupled subpopulations with inner structures. Chaos 27(10).

54.Song J, Weng T, Gu C, & Yang H(2020) Patterns of cross-correlation in time series: A case study of gait trails*. Chinese Physics B 29(8).

55.Stephen M, Gu C, & Yang H (2015) Visibility Graph Based Time Series Analysis. PLoS One 10(11).

56.Wang Y, Ca X, Weng T, Yang H, & Gu C (2021) Lowest-degree preference random walks on complex networks. Physica A 577.

57.Wang Y, Cao X, Weng T, Yang H, & Gu C (2021) A convex principle of search time for a multi-biased random walk on complex networks. Chaos Solitons & Fractals 147.

58.Wang Y, et al. (2014) An Automatic High Efficient Method for Dish Concentrator Alignment. Mathematical Problems in Engineering 2014.

59.Wang Y, Weng T, Deng S, Gu C, & Yang H (2019) Sampling frequency dependent visibility graphlet approach to time series. Chaos 29(2).

60.Weng T, et al. (2020) Synchronization of reservoir computers with applications to communications. Physica A 544.

61.Weng T, et al. (2021) Representing complex networks without connectivity via spectrum series. Information Sciences 563:16-22.

62.Weng T, et al. (2019) Predator-prey games on complex networks. Communications In Nonlinear Science And Numerical Simulation 79.

63.Weng T, Yang H, Gu C, Zhang J, & Small M (2019) Synchronization of chaotic systems and their machine-learning models. Physical Review E 99(4).

64.Wu G, Gu C, Qiu L, & Yang H (2017) A uniform framework of projection and community detection for one-mode network in bipartite networks. Chinese Physics B 26(12).

65.Wu G, Gu C, Qiu L, & Yang H (2018) Community detection based on preferred mode in bipartite networks. Modern Physics Letters B 32(27).

66.Wu J, Zheng M, Wang W, Yang H, & Gu C (2018) Double transition of information spreading in a two-layered network. Chaos 28(8).

67.Wu J, Zheng M, Xu K, & Gu C (2020) Effects of two channels on explosive information spreading. Nonlinear Dynamics 99(3):2387-2397.

68.Wu J, et al. (2018) A model of spreading of sudden events on social networks. Chaos 28(3).

69.Xu J, Gu C, Pumir A, Garnier N, & Liu Z (2012) Entrainment of the suprachiasmatic nucleus network by a light-dark cycle. Physical Review E 86(4).

70.Yang H, Gu C, Tang M, Cai S-M, & Lai Y-C (2019) Suppression of epidemic spreading in time-varying multiplex networks. Applied Mathematical Modelling 75:806-818.

71.Yang T, Gu C, & Yang H (2016) Long-Range Correlations in Sentence Series from A Story of the Stone. PLoS One 11(9).

72.Yang Y, Gu C, Xiao Q, & Yang H (2017) Evolution of scaling behaviors embedded in sentence series from A Story of the Stone. PLoS One 12(2).

73.Yang Y, et al. (2017) Scaling invariance embedded in very short time series: A factorial moment based diffusion entropy approach. Chinese Journal of Physics 55(6):2325-2335.

74.Yu X, Weng T, Gu C, & Yang H (2020) Comparison of gene regulatory networks to identify pathogenic genes for lymphoma. Journal of Bioinformatics and Computational Biology 18(5).

75.Yuan Q, Gu C, Weng T, & Yang H (2018) Unbiased detrended fluctuation analysis: Long-range correlations in very short time series. Physica A 505:179-189.

76.Yuan Q, et al. (2021) Multi-scale transition matrix approach to time series. Physica A 578.

77.Zhang K, et al. (2021) Synchronization of chaotic systems and long short-term memory networks by sharing a single variable. Modern Physics Letters B 35(6).

78.Zhao Y, Gu C, & Yang H (2021) Visibility-graphlet approach to the output series of a Hodgkin-Huxley neuron. Chaos 31(4).

79.Zhou L, Qiu L, Gu C, & Yang H (2018) Immediate causality network of stock markets. EPL 121(4).

80.Zhu B, Zhou J, Jia M, Yang H, & Gu C (2020) Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons. Chinese Physics B 29(6).

81. Zhou J, Gu C, Zhu B, Yang H, & Rohling J,(2022) Poincare model shows how heterogeneity in light sensitivity can alter circadian clock function. Communications in Nonlinear Science and Simulation 111.

82. Wang J, Gu C, & Ji P (2022) Frequency-amplitude correlation inducing first-order phase transition in coupled oscillators. New Journal of Physics 24(7).

83. Yan S, Li S, Wang H, Gu C, & Yang H (2022) Structure of cross-correlation between stock and oil markets. EPL 138(6).

84. Wang H, et al.(2022) Epidemic dynamics on higher-dimensional small world networks. Applied Mathematics and Computation 421.

85. Chen S, et al. (2022) A Nonlinear Time-Series Analysis to Identify the Thresholds in Relationships Between Antimicrobial Consumption and Resistance in a Chinese Tertiary Hospital. Infectious Diseases and Therapy 11(3): 1019-1032.

86. Liu Y, et al. (2022) Families' influence on romantic relationship and its reconstruction. Chaos Solitions & Fractals 155.

87. Wu G, Gu C, & Yang H (2022) A spectral method of modularity for community detection in bipartite networks. EPL 137(3).

88. Zheng W, Gu C, Yang H, & Rohling J (2022) Motif structure for the four subgroups within the suprachiasmatic nuclei affects its entrainment ability. Physical Review E 105(1).

89. Gao J, Wang X, Gu C, Shen C, & Yang H (2022) Irregular spots on body surfaces of vertebrates induced by supercritical pitchfork bifurcations. Chaos 32(1).

90. Sherehe S, Wan H, Gu C, & Yang H (2022) Information flow between stock markets: A Koopman decomposition approach. Chinese Physics B 31(1).

91. Wang P, Gu C, Yang H, & Wang H (2022) Identify the characteristic in the evolution of the causality between the gold and dollar. Electronic Research Archive 30(9): 3660-3678.

92. Gu C, Li J, Zhou J, Yang H, & Wang M (2022) Strengthen the circadian rhythms by the mathematical model of the SCN. European Physical Journal Special Topics 231(5): 827-832.

93. Gao J, Gu C, Shen C, & Yang, H (2021) Spiral waves in population density distributions of invasive pests in warm-temperate deciduous forest ecosystems. EPL 136(3).

94. Cao X, et al. (2021) One-Step Memory Random Walk on Complex Networks: An Efficient Local Navigation Strategy. Fluctuation and Noise Letters 20(5).

95. Gu C, Li J, Zhou J, Yang H, & Rohling J (2021) Network Structure of the Master Clock Is Important for Its Primary Function. Frontiers In Physiology 12.

96. Li W, et al. (2022) Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas. Applied Mathematics and Computation 435.

97. Huang Y, Gu C, & Yang H (2022) Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica 71(16).

98. Wang H, Du Z, Moore J, Yang H, & Gu C (2022) Causal networks reveal the response of Chinese stocks to modern crises. Information Sciences 609.

99. Chen J, Gu C, Ruan Z, & Tang M (2023) Competition of SARS-CoV-2 variants on the pandemic transmission dynamics. Chaos, solitons, and fractals 169.

100. Wang P, Gu C, Yang H, Wang H, & Moore J (2023) Characterizing systems by multi-scale structural complexity. Physica A-Statistical Mechanics and its Applications 609.

101. Gu C, Zhang Y, Zheng W, Wang H, Yang H, & Wang M (2023) Phase-shift of cellular coupling induces the anti-phase synchronization between the left and right suprachiasmatic nucleus. International Journal of Modern Physics C 34(04).

主讲课程

非线性科学(博士生)

人工智能(本科生)

系统科学导论(本科生)

计量经济学(本科生)


学术活动与社会服务

学术任职

上海市非线性科学研究会理事

中国系统工程学会系统理论专委会委员

Frontiers in Applied Mathematics and Statistics的学术编辑

Nonlinear dynamics(IF4.6)、PLoS ONE (IF3.3)、Journal of Biological Rhythms(IF3.2)、 Life Sciences(IF2.7)、PhysicalReview E (IF2.3)、Physica A(IF1.7)、Entropy(IF1.5)、 Chinese Physics B(IF1.6)、 Chinese Physics Letters (IF0.95) 等多个SCI期刊的审稿人


已毕业博士生(在校荣誉,刚毕业时的入职单位和职称等信息)

李文静  (系统科学,2016.9-2019.6)浙江水利水电学院  副教授 

吴娇  (系统科学,2017.9-2020.6)国家奖学金;上海理工大学优秀毕业论文;江苏大学  讲师 

高见   (系统科学,2018.9-2021.6)安庆师范大学  副教授\硕导;在读期间获得上海市优秀毕业生称号、国家奖学金一次、上海理工大学优秀毕业论文,以第一作者发表了8篇SCI论文;入职时以应届毕业生身份破格晋升副教授

吴果林 (系统科学,2022.6-,在职读博)桂林航天工业学院  教授、理学院院长

王萍    (系统科学, 2017.9-2023.6,硕博连读)国家奖学金一次,在读时发表一作SCI论文5篇;江苏科技大学


已毕业硕士生(在校荣誉,刚毕业时的入职单位等信息)

孙龙龙(系统科学,2016.9-2019.3)南京航空航天大学,博士生

顾翔玮 (系统科学, 2017.9-2020.6)上海理工大学优秀毕业论文;上海市优秀毕业生称号、国家奖学金一次;山东某县城民警。

王皓晴 (系统科学, 2017.9-2020.6)上海金山某高中数学老师;

朱宝   (系统科学, 2018.9-2021.6)在中国物理上发表论文;英国葛兰素史克(上海)

赵元英 (系统科学, 2018.9-2021.6)上海理工大学优秀毕业论文;在Chaos上发表论文; 上海商飞

秦贵秋 (系统科学, 2018.9-2021.6) 农业银行南通分行技术岗

李逍   (系统科学, 2019.9-2022.6)  三星

李泽朋  (系统科学, 2019.9-2022.6) 百度

李家慧   (系统科学, 2019.9-2022.6)上海市优秀毕业生称号、国家奖学金一次、发表三篇SC论文;中兴通讯


欢迎对复杂网络和非线性科学感兴趣的同学一志愿报考本课题组的硕士研究生、博士研究生(数学、物理、计算机、信息等理工专业),待遇丰厚;欢迎本院管科本科生来参加大学生创新创业计划、数学建模等。请联系 (请注明姓名等个人信息)邮箱:gu_changgui@163.com 。


荣誉

2018志远学者,上海理工大学 (考核优秀)

2019课程教学优秀奖,上海理工大学

2019育人工作突出贡献奖,上海理工大学管理学院

2021突出贡献奖,上海理工大学管理学院

2021事业单位立功一次 市委组织部、教委

2022 科研突出贡献奖,上海理工大学管理学院