职称/职务:教授 博士生导师
主要研究领域:生物数学、微分方程与动力系统、复杂系统数学理论与方法
电子邮箱: math-ysling@163.com
办公室:卓越楼
职称/职务:教授 博士生导师
主要研究领域:生物数学、微分方程与动力系统、复杂系统数学理论与方法
电子邮箱: math-ysling@163.com
办公室:卓越楼
学习与工作经历 1.1985年9月–1989年7月 在河南大学数学系学习,并获得理学学士学位 2.1989年9月–1996年7月 在河南省焦作市第一中学教书 3.1996年9月–2002年4月 在西安交通大学理学院攻读硕士、博士学位,并先后获得理学硕士、博士学位(导师:马知恩教授) 4.2002年6月–2004年11月 在上海交通大学数学系做博士后(导师:韩茂安教授) 5.2004年12月–至今 在上海理工大学理学院工作 6.2008年9月–2009年8月 作为受教育部支助的高校骨干教师在复旦大学数学学院访问进修(导师:李大潜院士) 7.2008年12月–2009年2月 受邀到加拿大约克(York)大学进行合作研究 8.2011年9月–2012年9月 在澳大利亚斯运伯恩(Swinburne)科技大学做高级研究学者 9.2013年10月–2014年10月 在加拿大维多利亚(Victoria)大学做访问学者 10.2015年8月–2015年9月 在加拿大韦尔福瑞德劳瑞(Wilfrid Laurier)大学合作研究 11.2016年7月–2016年8月 在加拿大维多利亚(Victoria)大学做访问学者 12.2017年8月–2017年8月 在加拿大韦尔福瑞德劳瑞(Wilfrid Laurier)大学合作研究 13.2018年3月–2018年5月 在加拿大维多利亚(Victoria)大学(3月28日-4月20日)和阿尔伯特(Albert)大学(4月20日-30日)合作研究 |
科研项目 [1]国家自然科学基金面上项目:气候变化对东海鱼类种群动力学的影响研究(执行时间:2021.1.1–2024.12.31,批准号:12071293) [2]国家自然科学基金面上项目:气候变化影响下海洋浮游生态系统的动力学模型研究(执行时间:2017.1.1–2020.12.31,批准号:11671260) [3]国家自然科学基金面上项目:噪声影响下具有不确定因素的恒化器动力学模型研究(执行时间:2013.1.1–2016.12.31,批准号:11271260) [4]国家自然科学基金面上项目:重组质粒DNA细胞培养的反应动力学模型研究(执行时间:2009.1.1–2011.12.31,批准号:10871129) [5]上海市教委科研创新(重点)项目:具有随机与不确定因素的微生物恒化培养动力学模型研究(执行时间:2013.1.1–2015.12.31,批准号:13ZZ116) [6]上海市教委科研创新(一般)项目:重组细胞培养的反应动力学模型的渐近性态(执行时间:2009.1.1–2011.12.31,批准号:09YZ208) [7]上海市教委自然基金一般项目:非线性流行病动力学模型的研究(执行时间:2005.10.1–2007.9.31,批准号:05EZ51) 论文 研究内容涉及常微分方程(脉冲微分方程、(偏)泛函微分方程、随机微分方程)定性与稳定性理论、分支理论、动力系统、种群动力学、流行病动力学、海洋生态学以及生物化学工程等诸多领域,具有多学科交叉的特点。曾多次到国内和国际多所高校访问进修和做访问学者。已在J. Differ. Equations, J. Math. Biol., J.Theoret. Biol., Math. Biosci., Bull. Math. Biol., Chaos等国内外重要学术刊物上发表SCI论文70余篇。 [1]Tingting Yu, Sanling Yuan*, Tonghua Zhang,The effect of delay interval on the feedback control for a turbidostat model,Journal of the Franklin Institute, 2021, 358(15): 7828-7649. [2]Shengnan Zhao, Sanling Yuan*, Hao Wang. Adaptive dynamics of a stoichiometric phosphorus-algae-zooplankton model with environmental fluctuations, Journal of Nonlinear Science, 2022, 32: 36. [3]Yingjie Fei, Shenglong Yang, Wei Fan, Huimin Shi, Han Zhang, Sanling Yuan*, Relationship between the Spatial and Temporal Distribution of Squid-Jigging Vessels Operations and Marine Environment in the North Pacific Ocean, Journal of Marine Science and Engineering, 2022,10: 550. [4]Anji Yang, Hao Wang, Tonghua Zhang, Sanling Yuan*, Stochastic switches of eutrophication and oligotrophication: modeling extreme weather via non-Gaussian L\'{e}vy noise, Chaos, 2022, 32: 043116. [5]Shufei Gao, JieJiang, Anglu Shen, Hao Wang, SanlingYuan*, Kinetics ofphosphate uptake in the dinoflagellate Karenia mikimotoi in response toP-stress and temperature, Ecological Modelling, 2022, 468:109909. [6]Shuai Li, Chengdai Huang, Sanling Yuan*, Hopf Bifurcation of a fractional-order double-ring tructured neural network model with multiple communication delays, Nonlinear Dynamics, 2022, 108(1): 379-396. [7]Cuihua Wang, Sanling Yuan*, Hao Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, Journal of Mathematical Biology, 2022, 84(3):12 [8]Shengnan Zhao, Sanling Yuan*, A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments, Mathematical Biosciences and Engineering, 2022, 19(4):3449-3471. [9]Tianfang Hou, Guijie Lan, Sanling Yuan*, Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate, Mathematical Biosciences and Engineering, 2022, 19 (4): 4217-4236. [10]Jingen Yang, Sanling Yuan*, Tonghua Zhang, Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and diffusion, Nonlinear Dynamics, 2021,104(2):1709-1735. [11]Han Zhang, Shenglong Yang, Wei Fan, Huimin Shi and Sanling Yuan*, Spatial analysis of the fishing behaviour of tuna purse seiners in the Western and Central Pacific based on vessel trajectory date, Journal of Marine Science and Engineering, 2021, 9: 322. [12]Jingen Yang, Sanling Yuan*, Dynamics of a toxic producing phytoplankton-zooplankton model with three-dimensional patch, Applied Mathematics Letters, 2021, 118: 107146. [13]Guijie Lan, Sanling Yuan*, Baojun Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, Journal of the Franklin Institute, 2021, 358(4): 2405-2433. [14]Yingying Wei, Baojun Song, Sanling Yuan*, Dynamics of a ratio-dependent population model for Green Sea Turtle with age structure, Journal of Theoretical Biology, 2021, 516: 110614. [15]Shengqiang Zhang, Tonghua Zhang, Sangling Yuan*, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecological Complexity, 2021, 45: 100889. [16]Chaoqun Xu, Sanling Yuan*, Competition exclusion in a general multi-species chemostat model with stochastic perturbations, Bulletin of Mathematical Biology, 2021, 83(1): 4. [17]Anji Yang, Baojun Song, Sanling Yuan*, Noise-induced transitions in a non-smooth SIS epidemic model with media alert, Mathematical Biosciences and Engineering, 2020, 18(1):745-763 [18]Changyong Xu, Qiang Li, Tonghua Zhang, Sanling Yuan*, Stability and Hopf Bifurcation for a Delayed Diffusive Competition Model with Saturation Effect, Mathematical Biosciences and Engineering, 2020, 17(6): 8037-8051. [19]Shuixian Yan, Sanling Yuan*, Critical value in a SIR network model with heterogeneous infectiousness and susceptibility, Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. [20]Yixiu Xia, Sanling Yuan*, Survival analysis of a stochastic predator-prey model with prey refuge and fear effect, Journal of Biological Dynamics, 2020, 14(1): 871-892 [21]Chaoqun Xu, Sanling Yuan*, Richards Growth Model Driven by Multiplicative and Additive Colored Noises: Steady-State Analysis, Fluctuation and Noise Letters, 2020, 19(4): 2050032. [22]Sanling Yuan*, Dongmei Wu, Guijie Lan, Hao Wang, Noise-induced transitions in a nonsmooth predator-prey model with stoichiometric constraints, Bulleting of Mathematical Biology, 2020, 82(5): 55. [23]Jingen Yang, Tonghua Zhang, Sanling Yuan*, Turing pattern induced by cross-diffusion in a predator-prey model with pack predation-herd behavior, International Journal of Bifurcation and Chaos, 2020, 30(7): 2050103. [24]Xingwang Yu, Sanling Yuan*, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discreteand Continuous Dynamical System-B, 2020, 25(7): 2373-2390. [25]Shengnan Zhao, Hao Wang, Sanling Yuan*, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, Journal of Differential Equations 268 (2020) 5113-5139. [26]Dianli Zhao, Sanling Yuan, Noise-induced bifurcations in the stochastic chemostat model with general nutrient uptake functions. Applied Mathematics Letters, 2020, 103: 106180. [27]Shuixian Yan, DongxueJia, Tonghua Zhang, Sanling Yuan*, Pattern dynamic in a diffusive predator-prey model with hunting cooperations, Chaos, Solitons and Fractals, 2020, 130: 109428. [28]Dianli Zhao, Haidong Liu, Yanli Zhou, Sanling Yuan, Quadratic harvesting dominated optimal strategy for stochastic single-species model, Journal of Applied Analysis & Computation, 2020,10(4): 1256-1266. [29]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Analysis: Hybrid Systems, 2019, 34: 209-225. [30]Yu Zhao, Liang You, Daniel Burkow, Sanling Yuan*, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dynamics, 2019, 95(2): 1529-1548. [31]Dianli Zhao, Sanling Yuan, Haidong Liu, Stochastic dynamics of the delayed chemostat with Lévy noises, International Journal of Biomathematics, 2019, 12(5): 1950056. [32]Dongxue Jia, Tonghua Zhang, Sanling Yuan*, Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, International Journal of Bifurcation and Chaos, 2019, 29(4): 1930011. [33]Dongmei Wu,Hao Wang, Sanling Yuan*, Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins, Mathematical Biosciences and Engineering, 2019, 16(4): 2141–2153. [34]Jie Jiang, Anglu Shen, Hao Wang, Sanling Yuan*, Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates Prorocentrum donghaiense with emphasis on two-stage dynamic process, Journal of Theoretical Biology, 2019, 463: 12–21. [35]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin producing phytoplankton in an impulsive polluted environment, Applied Mathematics and Computation, 2019, 347: 249–264. [36]Qiang Li, Sanling Yuan*, Cross-Diffusion Induced Turing Instability for a Competition Model with Saturation Effect, Applied Mathematics and Computation, 2019, 347: 64–77. [37]Dianli Zhao, Sanling Yuan, Threshold dynamics of the stochastic epidemic model with jump-diffusion infection force, Journal of Applied Analysis and computation, 2019, 9(2): 440-451. [38]Xuehui Ji, Sanling Yuan*, Tonghua Zhang, Huaiping Zhu, Stochastic modeling of algal bloom dynamics with delayed nutrient recycling, Mathematical Biosciences and Engineering, 2019, 16(1): 1–24. [39]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Confidence domain in the stochastic competition chemostat model with feedback control, Appl. Math. J.Chinese Univ. Ser. B, 2018, 33(4): 379-389. [40]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, About the optimal harvesting of a fuzzy predator-prey system: Abioeconomic model incorporating a prey refuge and predator mutual interference, Nonlinear Dynamics 94(2018) 2143-2160. [41]Juan M. Jaramillo Reina, J. Ma, P. van den Driessche, Sanling Yuan, Host contact structure is important for the recurrence of influenza A, Journal of Mathematical Biology 77 (2018) 1563-1588. [42]Dianli Zhao, Sanling Yuan, Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat, Applied Mathematics and Computation 339 (2018) 199-205. [43]Yu Zhao, Liping Zhang, Sanling Yuan*, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Physica A: Statistical Mechanics and its Applications 512 (2018)248-260. [44]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism, Physica A: Statistical Mechanics and its Applications505 (2018) 891-902. [45]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Analysis: Hybrid Systems 29 (2018) 373-382. [46]Dianli Zhao, Sanling Yuan, Haidong Liu, Random periodic solution for a stochastic SIS epidemic model with constant population size, Advances in Difference Equations 2018 (2018) 64. [47]39. Xingwang Yu, Sanling Yuan*, Tonghua Zhang, The effects of toxin producing phytoplankton and environmental fluctuations onthe planktonic blooms, Nonlinear Dynamics 2018, 91: 1653-1668. [48]Shuixian Yan, Yu Zhang, Junling Ma, Sanling Yuan*, An edge-based SIR model for sexually transmitted diseases on the contact network, Journal of Theoretical Biology 439 (2018) 216–225. [49]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Communications in Nonlinear Science and Numerical Simulation 59 (2018) 359-374. [50]Yu Zhao, Mingtao Li, Sanling Yuan*, Analysis of Transmission and Control of Tuberculosis in Mainland China, 2005-2016, Based on the Age-Structure Mathematical Model, International Journal of Environmental Research and Public Health 14 (2017) 1192. [51]Xuehui Ji, Sanling Yuan*, Jiao Li, Stability of a stochastic SEIS model with saturation incidence and latent period, Journalof Applied Analysis and Computation 7(4) (2017) 1652-1673. [52]Sanling Yuan*, Xuehui Ji and Huaiping Zhu, Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations, Mathematical Biosciencesand Engineering 14 (2017) 1477-1498. [53]Yu Zhao, Sanling Yuan*, Optimal harvesting policy of a stochastic two-species competitive model with Levy noise in apolluted environment, Physica A: Statistical Mechanics and its Applications 477 (2017) 20-33. [54]Yu Zhao, Sanling Yuan*, Tonghua Zhang, Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation, Communications in Nonlinear Science and Numerical Simulation 44 (2017) 266-276. [55]Xichao Duan, Sanling Yuan*, Global dynamics of an age-structured virus model with saturation effects, Mathematical Methods inApplied Sciences 40 (2017) 1851-1864. [56]Dianli Zhao, Sanling Yuan, Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation, Communications in Nonlinear Science and Numerical Simulation 46 (2017) 62-73. [57]Dianli Zhao, Sanling Yuan, Dynamics of delayed stochastic predator-prey models with feedback controls based on discrete observations, International Journal of Biomathematics 10(3) (2017) 1750040. [58]Dianli Zhao, Sanling Yuan, Persistence and stability of the disease-free equilibrium in a stochastic epidemic model with imperfect vaccine, Advances in Difference Equations 2016 (2016) 280. [59]Chaoqun Xu, Sanling Yuan*, Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior, Mathematical Biosciences 280 (2016) 1-9. [60]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Global dynamics of a predator-prey model with defence mechanism for prey, Applied Mathematics Letters 62(2016) 42-48. [61]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Stochastic sensitivity analysis for a competition turbidostat model with inhibitory nutrient, International Journal of Bifurcation and Chaos 26(10)(2016) 1650173. [62]Xichao Duan, Sanling Yuan*, Kaifa Wang, Dynamics of a diffusive age-structured HBV model with saturating incidence, Mathematical Biosciences and Engineering13(5) (2016) 935-968. [63]Dianli Zhao, Sanling Yuan, Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate, Physica A: Statistical Mechanics and its Applications 461 (2016) 419-428. [64]Xuehui Ji, Sanling Yuan*, Huaiping Zhu, Analysisof a stochastic model for algal bloom with nutrient recycling, International Journal of Biomathematics 8 (3) (2016) 1650083. [65]Yu Zhao, Sanling Yuan*, Qimin Zhang, The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment, Applied Mathematical Modelling 40 (2016) 7583-7600. [66]Yu Zhao, Sanling Yuan*, Stability indistribution of a stochastic hybrid competitive Lotka-Volterra model with Lévy jumps, Chaos, Solitons & Fractals 85 (2016)98-109. [67]Yu Zhao, Sanling Yuan*, Tonghua Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Communications in Nonlinear Scienceand Numerical Simulation 37 (2016) 131-142. [68]Sanling Yuan, P. van den Driessche, Frederick H. Willeboordse, Z. Shuai and J. Ma, Disease Invasion Risk in a Growing Population, Journal of Mathematical Biology 73 (2016) 665-681. [69]Dianli Zhao, Sanling Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, Journal of Mathematical Analysis and Applications 434 (2) (2016) 1336-1345. [70]Yanli Zhou, Sanling Yuan, Dianli Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Applied Mathematics and Computation 275 (2016) 255-267. [71]Dianli Zhao,Tiansi Zhang, Sanling Yuan, Thethreshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Physica A: Statistical Mechanics and its Applications 443 (1) (2016)372-379. [72]Chaoqun Xu, Sanling Yuan*, Spatial periodic solutions in a delayed diffusive predator–prey model with herd behavior, International Journal of Bifurcation and Chaos 25 (11) (2015) 1550155. [73]Chaoqun Xu, Sanling Yuan*, An analogue of break-even concentration in a simple stochastic chemostat model, Applied Mathematics Letters 48 (2015) 62-68. [74]Yu Zhao, Sanling Yuan*, Junling Ma, Survival and Stationary Distribution Analysis of a Stochastic Competitive Model of ThreeSpecies in a Polluted Environment, Bulletin of Mathematical Biology 77 (2015) 1285-1326. [75]Yu Zhao, Sanling Yuan*, Qimin Zhang, Numerical solution of a fuzzy stochastic single-species age-structure model in a polluted environment, Applied Mathematics and Computation 260 (2015) 385-396. [76]Xuehui Ji, Sanling Yuan*, Lansun Chen, A pest control model with state-dependent impulses, International Journal ofBiomathematics 8 (2015) 1550009. [77]Dianli, Zhao, Sanling Yuan, A note on persistence and extinction of a randomized food-limited logistic population model, Applied Mathematics and Computation 246 (2014) 599-607. [78]Yanli Zhou,Weiguo Zhang, Sanling Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Applied Mathematics and Computation 244 (2014) 118-131. [79]Xichao Duan, Sanling Yuan*, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Computers and Mathematics with Applications 68 (2014) 288-308. [80]Dianli Zhao, Sanling Yuan, Improved stability conditions for a class of stochastic Volterra-Levin equations, Applied Mathematics and Computation 231 (2014) 39-47. [81]Yanli Zhou, Weiguo Zhang, Sanling Yuan, Hongxiao Hu, Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate, Electronic Journal of Differential Equations 2014 (2014) 42. [82]Chaoqun Xu, Sanling Yuan*, Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior, Abstract andApplied Analysis 2014 (2014) 568943. [83]Xuehui Ji, Sanling Yuan*, Dynamics of a stochastic functional system for wastewater treatment, Abstract and Applied Analysis 2014(2014) 831573. [84]Xichao Duan, Sanling Yuan*, Xuezhi Li, Global stability of an SVIR model with age of vaccination, Applied Mathematics and Computation 226 (2014) 528-540. [85]Dianli Zhao, Sanling Yuan, 3/2-stability conditions for a class of Volterra-Levin equations, Nonlinear Analysis-Theory Methods& Applications 94 (2014) 1-11. [86]Sanling Yuan*, Chaoqun Xu,Tonghua Zhang, Spatial dynamics in a predator-prey model with herd behavior, CHAOS 23 (2013) 033102. [87]Yanli Zhou, Weiguo Zhang, Sanling Yuan*, Survival and Stationary Distribution in a Stochastic SIS Model, Discrete Dynamics in Nature and Society 2013 (2013) 592821. [88]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Asymptotic behavior of a chemostat model with stochastic perturbation on thedilution rate, Abstract and Applied Analysis 2013 (2013) 423154. [89]Sanling Yuan*, Tonghua Zhang, Dynamics of a plasmid chemostat model with periodic nutrient input and delayed nutrient recycling, Nonlinear Analysis: Real World Applications 13 (2012)2104-2119. [90]Sanling Yuan*, Yu Zhao, Anfeng Xiao and Tonghua Zhang, Bifurcation and chaos in a pulsed plankton model with instantaneous nutrient recycling, Rouky Mountain Journal of Mathematics 42 (2012) 1387-1409. [91]Sanling Yuan*, Pan Li, Yongli Song, Delay induced oscillations in a turbidostat with feedback control, Journal of Mathematical Chemistry 49 (2011) 1646-1666. [92]Bo Li, Sanling Yuan*, Weiguo Zhang, Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate, International Journal of Biomathematic 4 (2011) 227-239. [93]Sanling Yuan*, Weiguo Zhang, Yu Zhao, Bifurcation analysis of a model of plasmid-bearing, plasmid-free competition in a pulsed chemostat with an internal inhibitor, IMA Journal ofApplied Mathematics 76 (2011) 277−297. [94]Sanling Yuan*, Yongli Song, Junhu iLi, Oscillations in a plasmid turbidostat model with delayed feedback control, Discrete and Continuous Dynamical Systems-Series B 15 (2011) 809-914. [95]Sanling Yuan*, Pan Li, Stability and direction of Hopf bifurcations in a pair of identical tri-neuron network loops, NonlinearDynamics 61 (2010) 569-578. [96]Xiangzheng Li, Weiguo Zhang, Sanling Yuan, LS method and qualitative analysis of traveling wave solutions of Fisher equation, Acta Physica Sinica 52(2) (2010) 744-749. [97]Sanling Yuan*, Yongli Song, Bifurcation and stability analysis for a delayed Leslie–Gower predator–prey system, IMA Journal of Applied Mathematics 74 (2009)574-603. [98]Sanling Yuan*, Weiguo Zhang, Maoan Han, Global asymptotic behavior in chemostat-type competition models with delay, NonlinearAnalysis: Real World Applications 10 (2009) 1305-1320. [99]Sanling Yuan*, Bo Li, Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate, Discrete Dynamics in Nature and Society 2009 (2009)609306. [100]Sanling Yuan*, Yu Zhao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engneeing 2009 (2009) 204632. [101]Jianmei Luo, Sanling Yuan*, Weiguo Zhang, Competition between two microorganisms in the chemostat with general variableyields and general growth rates, International Journal of Biomathematics 1(4) (2008) 463-474. [102]Yongli Song, Sanling Yuan*, Bifurcation analysis for a regulated logistic growth model, Applied Mathematical Modelling 31 (2007)1729–1738. [103]Sanling Yuan*, Dongmei Xiao, Maoan Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Mathematical Biosciences202 (2006) 1-28. [104]Yongli Song, Sanling Yuan, Bifurcation analysis in a predator–prey system with time delay, Nonlinear Analysis: Real World Applications 7 (2006) 265-284. [105]Sanling Yuan*, Zhien Ma, Maoan Han, Global Stability on an SIS Epidemic Model with Time Delays, Acta Mathematica Scientia 25A (3) (2005) 349-356. [106]Sanling Yuan*, Maoan Han, Bifurcation analysis of a chemostat model with two distributed delays, Chaos, Solitons and Fractals 20 (2004) 995-1004. [107]Sanling Yuan*, Yongli Song, Maoan Han, Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays, Chaos, Solitons and Fractals 21 (2004) 1109-1123. [108]Sanling Yuan*, maoan Han, Zhien Ma, Competition in thechemostat: convergence of a model with delayed response in growth, Chaos,Solitons and Fractals 17 (2003) 659-667. [109]Sanling Yuan*, Zhien Ma, Zhen Jin, Persistence and periodic solution on a non-autonomous SIS Model with delays, Acta MathematicaeApplicatae Sinica 19 (2003) 1-10. [110]Sanling Yuan*, Litao Han, Zhien Ma, Analysis of an SIS epidemic model with variable population size and a delay, Appl. Math. J. Chinese Univ. Ser. B 18 (2003) 9-16. [111]Sanling Yuan*, Zhien Ma, Study on an SIS epidemic model with time variant delay, System Science and Complexity 15 (2002) 299-306. [112]Sanling Yuan*, Zhien Ma, Global stability and Hopf bifurcation of an SIS epidemic model with time delays, System Science andComplexity 14 (2001) 327-336. |
本科生课程 常微分方程、高等代数、复变函数和积分变换、线性代数、概率论与数理统计 研究生课程 常微分方程定性理论、常微分方程稳定性理论、常微分方程几何分支理论、生物数学基础、随机过程、随机微分方程、随机分析、反映扩散方程 |
[1]中国生物数学专业委员会常务理事 [2]Associate Editor for Mathematical Biosciences and Engineering [3]Guest Editor for special issue in Mathematical Biosciences and Engineering: Mathematical modeling and analysis on population ecology and infectious diseases with environmental fluctuations. https://www.aimspress.com/mbe/article/6184/special-articles [4]Guest Editor for special issue in Mathematics: Mathematical Population Dynamics and Epidemiology. https://www.mdpi.com/journal/mathematics/special_issues/Math_Pop_Dyn_Epid |